Odpowiedź:
Wyjaśnienie:
Zróbmy rozwiązanie parametryczne, które moim zdaniem jest nieco mniej wydajne.
Napiszmy podaną linię
Piszę to w ten sposób
Prostopadły przez
To spełnia pierwotną linię, kiedy
Gdy
To nasza odpowiedź.
Czek:
Sprawdzamy dwusieczną, a następnie sprawdzamy prostopadle.
Środek segmentu to
Sprawdzamy, że jest
Sprawdźmy, czy jest to iloczyn zerowej różnicy punktów końcowych segmentu z wektorem kierunkowym
Zrównoważona dźwignia ma dwa obciążniki, jeden o masie 2 kg i jeden o masie 8 kg. Jeśli pierwszy ciężar znajduje się 4 m od punktu podparcia, jak dalece znajduje się drugi ciężar od punktu podparcia?
1 m Zastosowana tutaj koncepcja to moment obrotowy. Aby dźwignia nie przechylała się ani nie obracała, musi mieć moment obrotowy równy zero. Formuła momentu obrotowego to T = F * d. Weźmy przykład, aby zrozumieć, że jeśli trzymamy kij i przyczepimy ciężar z przodu patyka, nie wydaje się to zbyt ciężkie, ale jeśli przeniesiemy ciężar na koniec drążka, wydaje się to znacznie cięższe. Dzieje się tak, ponieważ moment obrotowy wzrasta. Teraz, aby moment obrotowy był taki sam, T_1 = T_2 F_1 * d_1 = F_2 * d_2 Pierwszy blok waży 2 kg i wywiera w przybliżeniu 20N siły i znajduje się w odległości 4 m. Pierwszy blok waży 8 kg i
Zrównoważona dźwignia ma na sobie dwa obciążniki: pierwszy o masie 7 kg, a drugi o masie 4 kg. Jeśli pierwszy ciężar znajduje się 3 m od punktu podparcia, jak dalece znajduje się drugi ciężar od punktu podparcia?
Waga 2 wynosi 5,25 m od punktu podparcia Moment = siła * Odległość A) Waga 1 ma moment 21 (7 kg x x 3 m) Waga 2 musi również mieć moment 21 B) 21/4 = 5,25 m Ściśle mówiąc, kg należy przeliczyć do niutonów zarówno w A, jak i B, ponieważ momenty są mierzone w metrach niutonowych, ale stałe grawitacyjne zostaną anulowane w B, więc zostały pominięte ze względu na prostotę
Zrównoważona dźwignia ma na sobie dwa obciążniki: pierwszy o masie 15 kg, a drugi o masie 14 kg. Jeśli pierwszy ciężar znajduje się 7 m od punktu podparcia, jak dalece znajduje się drugi ciężar od punktu podparcia?
B = 7,5 m F: „pierwszy ciężar” S: „drugi ciężar” a: „odległość między pierwszym ciężarem a punktem podparcia” b: „odległość między drugim ciężarem a punktem podparcia” F * a = S * b 15 * anuluj (7) = anuluj (14) * b 15 = 2 * bb = 7,5 m