Odpowiedź:
Jeśli baza jest
Wyjaśnienie:
Zależy to od tego, czy punkty te tworzą podstawę czy też boki.
Najpierw znajdź długość między dwoma punktami.
Odbywa się to przez znalezienie długości wektora między dwoma punktami:
Jeśli jest to długość bazy, to:
Zacznij od znalezienia wysokości trójkąta.
Obszar trójkąta określają:
W związku z tym:
Ponieważ wysokość przecina trójkąt równoramienny w dwa podobne trójkąty po prawej stronie, możemy użyć pytagoras.
Obie strony będą wtedy:
Gdyby była to długość dwóch stron, to:
Użyj formuły obszaru dla trójkątów w generelu,
Ale to nie jest możliwe dla prawdziwego trójkąta, więc musimy założyć, że dwie współrzędne tworzą podstawę.
Dwa rogi trójkąta równoramiennego znajdują się w (1, 2) i (1, 7). Jeśli pole trójkąta wynosi 64, jakie są długości boków trójkąta?
„Długość boków wynosi 25,722 do 3 miejsc po przecinku” Długość podstawy wynosi 5 Zwróć uwagę na sposób, w jaki pokazałem swoją pracę. Matematyka polega częściowo na komunikacji! Niech Delta ABC reprezentuje tę w pytaniu Niech długość boków AC i BC będzie s Niech wysokość pionowa będzie h Niech obszar będzie a = 64 "jednostek" ^ 2 Niech A -> (x, y) -> ( 1,2) Niech B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ kolor (niebieski) („Aby określić długość AB”) kolor (zielony) (AB ”” = ”„ y_2-y_1 ”” = ”„ 7-2 ”” = „5)” ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ kolor (niebieski) („Aby
Dwa rogi trójkąta równoramiennego znajdują się w (1, 2) i (9, 7). Jeśli pole trójkąta wynosi 64, jakie są długości boków trójkąta?
Długości trzech boków Delty to kolor (niebieski) (9,434, 14,3645, 14,3645). Długość a = sqrt ((9-1) ^ 2 + (7-2) ^ 2) = sqrt 89 = 9,434 Obszar delty = 4:. h = (obszar) / (a / 2) = 6 4 / (9,434 / 2) = 6 4 / 4,717 = 13,5679 bok b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((4.717) ^ 2 + (13,5679) ^ 2) b = 14,3645 Ponieważ trójkąt jest równoramienny, trzecia strona również = b = 14,3645
Dwa rogi trójkąta równoramiennego znajdują się w (1, 3) i (1, 4). Jeśli pole trójkąta wynosi 64, jakie są długości boków trójkąta?
Długości boków: {1,1288,0,128.0} Wierzchołki (1,3) i (1,4) są oddalone od siebie o 1 jednostkę. Tak więc jedna strona trójkąta ma długość 1. Zauważ, że równe boki trójkąta równoramiennego nie mogą być równe 1, ponieważ taki trójkąt nie może mieć powierzchni 64 jednostek kwadratowych. Jeśli użyjemy boku o długości 1 jako podstawy, to wysokość trójkąta względem tej podstawy musi wynosić 128 (ponieważ A = 1/2 * b * h o podanych wartościach: 64 = 1/2 * 1 * hrarr h = 128) Dzielenie podstawy, aby utworzyć dwa prawe trójkąty i zastosowanie twierdzenia Pitagorasa, długości nieznanych bo