Rzucasz dwiema kostkami. Jakie jest prawdopodobieństwo, że suma kostek jest nieparzysta i obie kości pokazują liczbę 5?

Rzucasz dwiema kostkami. Jakie jest prawdopodobieństwo, że suma kostek jest nieparzysta i obie kości pokazują liczbę 5?
Anonim

Odpowiedź:

#P_ (nieparzysty) = 18/36 = 0,5 #

#P_ (2 * piątki) = 1/36 = 0,02 bar7 #

Wyjaśnienie:

Patrząc na źle narysowaną tabelę poniżej, można zobaczyć na górze liczby od 1 do 6. Reprezentują pierwszą kostkę, Pierwsza kolumna reprezentuje drugą kostkę. Wewnątrz widzisz liczby od 2 do 12. Każda pozycja reprezentuje sumę dwóch kości. Zauważ, że ma 36 całkowitych możliwości dla wyniku rzutu. jeśli policzymy wyniki nieparzyste, otrzymamy 18, więc prawdopodobieństwo liczby nieparzystej wynosi 18/36 lub 0,5. Teraz obie kości pokazujące pięć występują tylko raz, więc prawdopodobieństwo wynosi 1/36 lub 0,0277777777

….1 ….2 ….3 ….4 ….5 ….6

1.2 …3 ….4 ….5 ….6 ….7

2 3 …4 ….5 ….6 ….7 ….8

3 4 …5 ….6 ….7 ….8 ….9

4 5 …6 ….7 ….8 ….9 …10

5 6 …7 ….8 ….9 …10 …11

6 7 …8 ….9 …10 …11 …12