P i Q są korzeniami 3x2-12x + 6. Znajdź 1 / p2 - 1 / q * 2?

P i Q są korzeniami 3x2-12x + 6. Znajdź 1 / p2 - 1 / q * 2?
Anonim

Odpowiedź:

# 1 / p ^ 2-1 / q ^ 2 = 2sqrt2 #…..# (p <q) #.

Wskazówka: # (x-y) ^ 2 = x ^ 2 + y ^ 2-2xy = x ^ 2 + 2xy + y ^ 2-4xy #

# => (x-y) ^ 2 = (x + y) ^ 2-4xy #

proszę użyć '^' zamiast ' * '. # i.e.x ^ 2 do #x ^ 2 i nie x * 2

Wyjaśnienie:

Myślę, że twoje równanie kwadratowe jest

# 3x ^ 2-12x + 6 = 0 #.

W porównaniu do # ax ^ 2 + bx + c = 0 #, dostajemy

# a = 3, b = -12 i c = 6 #

Jeśli korzenie tego equn. są #p i q #, następnie

# p + q = -b / a i pq = c / a #

# i.e.p + q = - (- 12) / 3 = 4 i pq = 6/3 = 2 #

Teraz, # 1 / p ^ 2-1 / q ^ 2 = (q ^ 2-p ^ 2) / (p ^ 2q ^ 2) = ((q + p) (q-p)) / (pq) ^ 2 #,….# (p <q) #

# => 1 / p ^ 2-1 / q ^ 2 = ((4) sqrt ((q-p) ^ 2)) / 2 ^ 2 = sqrt ((q-p) ^ 2 #

# => 1 / p ^ 2-1 / q ^ 2 = sqrt ((q + p) ^ 2-4pq) = sqrt (4 ^ 2-4 (2) #

# => 1 / p ^ 2-1 / q ^ 2 = sqrt (16-8) = sqrt8 = 2sqrt2 #….# (p <q) #

# 3x ^ 2-12x + 6 = 0 #

# => x ^ 2 - 4x + 2 = 0 #

Korzenie, #x = (- b + -sqrt (b ^ 2-4ac)) / (2a) #

# x = (4 + -sqrt (16-4 * 1 * 2)) / (2) #

# x = (4 + -sqrt (8)) / (2) = (4 + -2sqrt (2)) / (2) #

# x = (2 + -2sqrt (2)) #

Znaleźć, # 1 / p ^ 2 - 1 / q ^ 2 #

# => (1 / p + 1 / q) (1 / p-1 / q) #

# => (1 / (2 + 2sqrt (2)) + 1 / (2-2sqrt (2))) (1 / (2 + 2sqrt (2)) - 1 / (2-2sqrt (2))) #

# => (((2-2sqrt (2)) + (2 + 2sqrt (2))) / ((2-2sqrt (2)) (2 + 2sqrt (2)))) (((2-2sqrt (2)) - (2 + 2sqrt (2))) / ((2-2sqrt (2)) (2 + 2sqrt (2)))) #

# => (((2 + 2)) / ((2-2sqrt (2)) (2 + 2sqrt (2)))) (((- - 2sqrt (2) -2sqrt (2))) / ((2 -2sqrt (2)) (2 + 2sqrt (2)))) #

# => ((4 (-4sqrt2)) / ((4-8)) ^ 2) #

# => ((4 (-4sqrt2)) / (- 4) ^ 2) #

# => (- sqrt2) #