Odpowiedź:
1200 roczników
Wyjaśnienie:
Ponieważ wydali 12 000 USD na sprzęt drukarski, muszą sprzedawać wystarczającą liczbę roczników, aby uzupełnić utracone pieniądze.
Każdy sprzedany rocznik przynosi 10 USD, ponieważ są one sprzedawane za 15 USD, ale każdy z nich kosztuje również 5 USD za wydrukowanie przy użyciu sprzętu.
Użyjmy
1200 roczników
Koszt drukowania 200 wizytówek to 23 USD. Koszt drukowania 500 wizytówek w tej samej firmie wynosi 35 USD. Jak piszesz i rozwiązujesz równanie liniowe, aby znaleźć koszt drukowania 700 wizytówek?
Cena za wydrukowanie 700 kart wynosi 15 $ + 700 $ / 25 = 43 $. Musimy MODELOWAĆ koszt na podstawie liczby wydrukowanych kart. Zakładamy, że istnieje FIXED F za każdą pracę (zapłacić za konfigurację itp.) Oraz VARIABLE V V, która jest ceną na wydrukowanie pojedynczej karty. Całkowita cena P będzie wtedy P = F + nV, gdzie n jest liczbą wydrukowanych kart. Z opisu problemu mamy dwa równania Równanie 1: 23 = F + 200V i Równanie 2: 35 = F + 500V Rozwiążmy równanie 1 dla FF = 23-200V i zastąpmy tę wartość dla F w równaniu 2. 35 = 23-200V + 500V Teraz rozwiąż to dla V. 12 = 300V V = 1/25 Możemy umieś
Szkoła zakupiła sprzęt baseballowy i mundury za łączny koszt 1762 USD. Sprzęt kosztuje 598 USD, a mundury 24,25 USD. Ile mundurów kupił w szkole?
Liczba mundurów wynosi 48 Kolor kosztów całkowitych (biały) (.) "" -> "" 1762 Sprzęt "" -> ul (kolor (biały) (......) 598) larr "odejmij" Łącznie dla mundurów "" 1164 Jeśli każdy mundur kosztuje 24,25 $, to liczba mundurów jest taka sama, jak 24,25 $ w 1164 $ 1173 -: 24,25 $ = 48 Więc liczba mundurów wynosi 48
Mary kupuje bilety na film ??? Każdy bilet dla dorosłych kosztuje 9 USD - każdy bilet dla dziecka kosztuje 5 USD - Mary wydaje 110 USD na bilety - Mary kupuje 14 biletów łącznych
4 bilety dla dzieci i 10 biletów dla dorosłych. Z podanych informacji wykonamy dwa równania. Podam „bilet dla dorosłych” zmienną ai „bilet dla dziecka” zmienną c. Pierwsze równanie, które możemy wykonać, pochodzi z tego zdania: „Mary wydaje 110 dolarów na bilety”. Wiemy, że a kosztuje 9 USD, a c kosztuje 5 USD, to jest nasze równanie: 9a + 5c = 110 Drugi mówi, że „Mary kupuje 14 biletów ogółem”. Ponieważ te 14 biletów jest kombinacją biletów dorosłych i biletów dla dzieci, równanie to: a + c = 14 Przeorganizujemy to tak, abyśmy mogli je uwzględnić w innym r