Odpowiedź:
Domena to wszystkie liczby rzeczywiste z wyjątkiem -1 i 3.
Wyjaśnienie:
Domeną funkcji są wszystkie punkty, w których funkcja jest zdefiniowana, ponieważ nie możemy podzielić przez zero pierwiastków mianownika nie ma w domenie, a następnie:
Stąd domena to wszystkie liczby rzeczywiste z wyjątkiem -1 i 3.
Pokaż, że cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jestem trochę zdezorientowany, jeśli zrobię Cos²4π / 10 = cos² (π-6π / 10) i cos²9π / 10 = cos² (π-π / 10), zmieni się ono w cos (180 ° -heta) = - costheta w drugi kwadrant. Jak mogę udowodnić pytanie?
Patrz poniżej. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Domena f (x) jest zbiorem wszystkich rzeczywistych wartości z wyjątkiem 7, a domena g (x) jest zbiorem wszystkich rzeczywistych wartości z wyjątkiem -3. Jaka jest domena (g * f) (x)?
Wszystkie liczby rzeczywiste z wyjątkiem 7 i -3, kiedy mnożymy dwie funkcje, co robimy? bierzemy wartość f (x) i mnożymy ją przez wartość g (x), gdzie x musi być taka sama. Jednak obie funkcje mają ograniczenia 7 i -3, więc produkt dwóch funkcji musi mieć * oba * ograniczenia. Zwykle podczas wykonywania operacji na funkcjach, jeśli poprzednie funkcje (f (x) i g (x)) miały ograniczenia, zawsze są traktowane jako część nowego ograniczenia nowej funkcji lub ich działania. Można to również wizualizować, tworząc dwie funkcje wymierne o różnych ograniczonych wartościach, a następnie mnożąc je i sprawdzając, gdzie
Jaka jest domena połączonej funkcji h (x) = f (x) - g (x), jeśli domena f (x) = (4,4,5) i domena g (x) to [4, 4,5 )?
Domena to D_ {f-g} = (4,4,5). Zobacz wyjaśnienie. (f-g) (x) można obliczyć tylko dla tych x, dla których zdefiniowano zarówno f, jak i g. Możemy więc napisać, że: D_ {f-g} = D_fnnD_g Tutaj mamy D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)