Jakie jest nachylenie dowolnej linii prostopadłej do przechodzącej linii (-6,5) i (-8,10)?

Jakie jest nachylenie dowolnej linii prostopadłej do przechodzącej linii (-6,5) i (-8,10)?
Anonim

Odpowiedź:

Zobacz proces rozwiązania poniżej:

Wyjaśnienie:

Wzór na znalezienie nachylenia linii to:

#m = (kolor (czerwony) (y_2) - kolor (niebieski) (y_1)) / (kolor (czerwony) (x_2) - kolor (niebieski) (x_1)) #

Gdzie # (kolor (niebieski) (x_1), kolor (niebieski) (y_1)) # i # (kolor (czerwony) (x_2), kolor (czerwony) (y_2)) # są dwa punkty na linii.

Zastępowanie wartości z punktów problemu daje:

#m = (kolor (czerwony) (10) - kolor (niebieski) (5)) / (kolor (czerwony) (- 8) - kolor (niebieski) (- 6)) = (kolor (czerwony) (10) - kolor (niebieski) (5)) / (kolor (czerwony) (- 8) + kolor (niebieski) (6)) = 5 / -2 = -5 / 2 #

Nazwijmy nachylenie linii prostopadłej: #color (niebieski) (m_p) #

Nachylenie linii prostopadłej do linii ze spadkiem #color (czerwony) (m) # jest ujemną odwrotnością, lub:

#color (niebieski) (m_p) = -1 / kolor (czerwony) (m) #

Zastąpienie nachylenia linii w problemie daje:

#color (niebieski) (m_p) = (-1) / kolor (czerwony) (- 5/2) = 2/5 #