Odpowiedź:
Wyjaśnienie:
Pierwszą rzeczą do rozwiązania tutaj jest wyrażenie „dwóch kolejnych liczb całkowitych” algebraicznie.
Zastosuj twierdzenie Pitagorasa:
# (2x) ^ 2 + (2x + 2) ^ 2 = 10 ^ 2 #
# 4x ^ 2 + 4x ^ 2 + 8x + 4 = 100 #
# 8x ^ 2 + 8x-96 = 0 #
# x ^ 2 + x-12 = 0 #
# (x + 4) (x-3) = 0 #
# x = -4,3 #
A zatem,
Nogi są
# 2xrArr6 #
# 2x + 2rArr8 #
# "hypotenuse" rArr10 #
Bardziej intuicyjnym sposobem zrobienia tego problemu jest rozpoznanie, że a
Przeciwprostokątna trójkąta prawego ma 39 cali, a długość jednej nogi jest o 6 cali dłuższa niż dwukrotność drugiej nogi. Jak znaleźć długość każdej nogi?
Nogi mają długość 15 i 36 Metoda 1 - Znajome trójkąty Pierwsze kilka trójkątów prostokątnych o boku długości nieparzystej to: 3, 4, 5 5, 12, 13 7, 24, 25 Zauważ, że 39 = 3 * 13, więc czy trójkąt z następującymi stronami będzie działał: 15, 36, 39, czyli 3 razy większy niż trójkąt 5, 12, 13? Dwa razy 15 to 30, plus 6 to 36 - Tak. kolor (biały) () Metoda 2 - Formuła Pitagorasa i mała algebra Jeśli mniejsza noga ma długość x, wówczas większa noga ma długość 2x + 6, a przeciwprostokątna: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) kolor (biały) (39) = sqrt (5x ^ 2 + 24x + 36) Kwadrat obu końców, aby uzy
Przeciwprostokątna trójkąta prostokątnego ma 6,1 jednostki długości. Dłuższa noga jest o 4,9 jednostki dłuższa niż krótsza noga. Jak znaleźć długości boków trójkąta?
Boki są koloru (niebieski) (1,1 cm i kolor (zielony) (6 cm Przeciwprostokątna: kolor (niebieski) (AB) = 6,1 cm (przy założeniu, że długość jest w cm) Niech krótsza noga: kolor (niebieski) (BC) = x cm Niech dłuższa noga: kolor (niebieski) (CA) = (x +4,9) cm Zgodnie z twierdzeniem Pitagorasa: (AB) ^ 2 = (BC) ^ 2 + (CA) ^ 2 (6,1) ^ 2 = (x) ^ 2 + (x + 4,9) ^ 2 37,21 = (x) ^ 2 + kolor (zielony) ((x + 4,9) ^ 2 Zastosowanie poniższej właściwości do koloru (zielony) ((x + 4,9) ^ 2 : kolor (niebieski) ((a + b) ^ 2 = a ^ 2 + 2ab + b ^ 2 37,21 = (x) ^ 2 + [kolor (zielony) (x ^ 2 + 2 xx x xx4,9 + 24,01) ] 37.21 = (x) ^ 2 + [kolor
„Lena ma 2 kolejne liczby całkowite.Zauważa, że ich suma jest równa różnicy między ich kwadratami. Lena wybiera kolejne 2 kolejne liczby całkowite i zauważa to samo. Udowodnij algebraicznie, że jest to prawdą dla 2 kolejnych liczb całkowitych?
Prosimy odnieść się do Wyjaśnienia. Przypomnijmy, że kolejne liczby całkowite różnią się o 1. Stąd, jeśli m jest jedną liczbą całkowitą, to kolejna liczba całkowita musi być n + 1. Suma tych dwóch liczb całkowitych wynosi n + (n + 1) = 2n + 1. Różnica między ich kwadratami to (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zależnie od potrzeb! Poczuj radość matematyki!