Odpowiedź:
Nasze strony są
Wyjaśnienie:
Możemy zacząć od stworzenia równania, które może reprezentować informacje, które posiadamy. Wiemy, że całkowity obwód jest
Nasze równanie wygląda tak:
Jeśli podłączymy to do każdej strony, otrzymamy
Długość każdej z nóg trójkąta równoramiennego jest o 3 km dłuższa niż podstawy. Obwód trójkąta wynosi 24 km. Jak znaleźć długość każdej strony?
6-9-9 Niech x będzie długością podstawy => x + 3 = długość nóg x + x + 3 + x + 3 = 24 => 3x + 6 = 24 => 3x = 18 => x = 6 => x + 3 = 9
Obwód trójkąta wynosi 29 mm. Długość pierwszej strony jest dwukrotnie większa niż długość drugiej strony. Długość trzeciej strony wynosi 5 więcej niż długość drugiej strony. Jak znaleźć boczne długości trójkąta?
S_1 = 12 s_2 = 6 s_3 = 11 Obwód trójkąta jest sumą długości wszystkich jego boków. W tym przypadku podaje się, że obwód wynosi 29 mm. Więc w tym przypadku: s_1 + s_2 + s_3 = 29 Więc rozwiązywanie dla długości boków, tłumaczymy instrukcje w podanej formie równania. „Długość pierwszej strony jest dwa razy dłuższa niż druga strona” Aby rozwiązać ten problem, przypisujemy zmienną losową s_1 lub s_2. W tym przykładzie pozwoliłbym x być długością drugiej strony, aby uniknąć ułamków w moim równaniu. więc wiemy, że: s_1 = 2s_2, ale ponieważ pozwoliliśmy s_2 być x, teraz wiemy, że: s_1 = 2x s
Jedna noga trójkąta prawego jest o 8 milimetrów krótsza niż dłuższa noga, a przeciwprostokątna jest o 8 milimetrów dłuższa niż dłuższa noga. Jak znaleźć długości trójkąta?
24 mm, 32 mm i 40 mm Wywołanie x krótkiej nogi Wywołanie y długiej nogi Wywołanie h przeciwprostokątnej Otrzymujemy te równania x = y - 8 h = y + 8. Zastosuj twierdzenie Pythagora: h ^ 2 = x ^ 2 + y ^ 2 (y + 8) ^ 2 = y ^ 2 + (y - 8) ^ 2 Rozwijanie: y ^ 2 + 16y + 64 = y ^ 2 + y ^ 2 - 16y + 64 y ^ 2 - 32y = 0 y (y - 32) = 0 -> y = 32 mm x = 32 - 8 = 24 mm h = 32 + 8 = 40 mm Sprawdź: (40) ^ 2 = (24) ^ 2 + (32) ^ 2. DOBRZE.