Odpowiedź:
3
Wyjaśnienie:
Wartości
Od
Wykres funkcji f (x) = (x + 2) (x + 6) pokazano poniżej. Które stwierdzenie o funkcji jest prawdziwe? Funkcja jest dodatnia dla wszystkich rzeczywistych wartości x, gdzie x> –4. Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Liczba możliwych wartości integralnych parametru k, dla których nierówność k ^ 2x ^ 2 <(8k -3) (x + 6) jest prawdziwa dla wszystkich wartości x spełniających x ^ 2 <x + 2 wynosi?
0 x ^ 2 <x + 2 jest prawdziwe dla x w (-1,2), teraz rozwiązuje się dla kk ^ 2 x ^ 2 - (8 k - 3) (x + 6) <0 mamy k in ((24 + 4 x - sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2, (24 + 4 x + sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2), ale (24 + 4 x + sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2 jest nieograniczone, gdy x zbliża się do 0, więc odpowiedź brzmi 0 wartości całkowitych dla k spełniających dwa warunki.
Niech S_n = n ^ 2 + 20n + 12, n jest dodatnią liczbą całkowitą. Jaka jest suma wszystkich możliwych wartości n, dla których S_n jest kwadratem idealnym?
Biorąc pod uwagę S_n = n ^ 2 + 20n + 12, "gdzie" n = + ve "liczba całkowita" Podane wyrażenie może być ułożone na różne sposoby związane z idealnym kwadratem liczb całkowitych. Tutaj pokazano tylko 12 układów. S_n = (n + 1) ^ 2 + 18n + 11 ......... [1] S_n = (n + 2) ^ 2 + 16n + 8 .......... [2] S_n = (n + 3) ^ 2 + 14n + 3 .......... [3] S_n = (n + 4) ^ 2 + 12n-4 .......... [4] S_n = (n + 5) ^ 2 + 10n-13 ......... [5] S_n = (n + 6) ^ 2 + kolor (czerwony) (8 (n-3) ......... [6]) S_n = (n + 7) ^ 2 + 6n-37 ... ....... [7] S_n = (n + 8) ^ 2 + kolor (czerwony) (4 (n-13) ......... [8]) S_n = (n + 9)