Użyj pierwszych zasad, aby znaleźć gradient y = tanh (x)?

Użyj pierwszych zasad, aby znaleźć gradient y = tanh (x)?
Anonim

Dany # y = f (x) #, #f '(x) = lim_ (hto0) (f (x + h) -f (x)) / h #

#f '(x) = lim_ (hto0) (tanh (x + h) -tan (x)) / h #

#f '(x) = lim_ (hto0) ((tanh (x) + tanh (h)) / (1 + tanh (x) tanh (h)) - tan (x)) / h #

#f '(x) = lim_ (hto0) ((tanh (x) + tanh (h)) / (1 + tanh (x) tanh (h)) - (tanh (x) + tanh (h) tanh ^ 2 (x)) / (1 + tanh (x) tanh (h))) / h #

#f '(x) = lim_ (hto0) ((tanh (x) + tanh (h) -tanh (x) -tanh (h) tanh ^ 2 (x)) / (1 + tanh (x) tanh (h))) / h #

#f '(x) = lim_ (hto0) (tanh (x) + tanh (h) -tanh (x) -tanh (h) tanh ^ 2 (x)) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (tanh (h) -tanh (h) tanh ^ 2 (x)) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (tanh (h) (1-tanh ^ 2 (x))) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (tanh (h) sech ^ 2 (x)) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (sinh (h) sech ^ 2 (x)) / (hcosh (h) (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) sinh (h) / h * lim_ (hto0) sech ^ 2 (x) / (cosh (h) (1 + tanh (x) tanh (h))) #

#f '(x) = 1 * sech ^ 2 (x) / (cosh (0) (1 + tanh (x) tanh (0))) #

#f '(x) = 1 * sech ^ 2 (x) / (1 (1 + 0)) #

#f '(x) = sech ^ 2 (x) #