Jaka jest domena? Domena jest zakresem liczb, gdy podstawiona daje prawidłową odpowiedź i nie jest niezdefiniowana
Teraz byłoby niezdefiniowane, gdyby mianownik był równy 0
Więc,
Więc te liczby nie są częścią domeny
Byłoby to również niezdefiniowane, gdyby liczba pod korzeniem była ujemna.
Więc dla
Zatem wszystkie liczby dodatnie nie są również częścią domeny
Tak więc, jak widzimy, liczby, które powodują, że są niezdefiniowane, są liczbami dodatnimi
Stąd domena jest liczbą ujemną włącznie z 0.
Funkcja f jest taka, że f (x) = a ^ 2x ^ 2-ax + 3b dla x <1 / (2a) Gdzie aib są stałe dla przypadku, gdy a = 1 i b = -1 Znajdź f ^ - 1 (cf i znajdź swoją domenę Znam domenę f ^ -1 (x) = zakres f (x) i wynosi -13/4, ale nie znam kierunku znakowania nierówności?
Zobacz poniżej. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Zakres: Umieść w formie y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimalna wartość -13/4 Występuje przy x = 1/2 Zakres So jest (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Używając wzoru kwadratowego: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Przy odrobinie myślenia widzimy, że dla domeny, w której mamy wymagane jest odwrotne : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Z domeną: (-13 / 4
Co to jest (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bierzemy, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (anuluj (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - anuluj (2sqrt15) -5 + 2 * 3 + anuluj (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Zauważ, że jeśli w mianownikach są (sqrt3 + sqrt (3 + sqrt5)) i (s
Dlaczego tak wielu ludzi ma wrażenie, że musimy znaleźć domenę funkcji racjonalnej, aby znaleźć jej zera? Zero f (x) = (x ^ 2-x) / (3x ^ 4 + 4x ^ 3-7x + 9) to 0,1.
Myślę, że znalezienie domeny funkcji wymiernej niekoniecznie jest związane ze znalezieniem jej pierwiastków / zer. Znalezienie domeny oznacza po prostu znalezienie warunków wstępnych dla samego istnienia funkcji racjonalnej. Innymi słowy, zanim odnajdziemy swoje korzenie, musimy się upewnić, w jakich warunkach funkcja ta istnieje. Może to wydawać się pedantyczne, ale istnieją szczególne przypadki, gdy ma to znaczenie.