Odpowiedź:
Narysuj diagram przedstawiający pytanie:
Wyjaśnienie:
Zakładając, że x reprezentuje długość pierwszej strony.
Użyj twierdzenia pitagorejskiego do rozwiązania:
Rozwiąż równanie kwadratowe, używając wzoru kwadratowego.
Na końcu otrzymasz długości boków # (- 14 ± 34) / 4 lub -12 i 5
Gdy ujemna długość trójkąta jest niemożliwa, 5 to wartość x, a 5 + 7 to wartość x + 7, co daje 12.
Wzór na obszar trójkąta prawego to A =
A =
A =
A =
Przeciwprostokątna trójkąta prostokątnego ma 17 cm długości. Druga strona trójkąta jest o 7 cm dłuższa niż trzecia strona. Jak znaleźć nieznane długości boków?
8 cm i 15 cm Używając twierdzenia Pitagorasa wiemy, że każdy trójkąt prostokątny z bokami a, b i c przeciwprostokątną: a ^ 2 + b ^ 2 = c ^ 2 c = 17 a = xb = x + 7 a ^ 2 + b ^ 2 = c ^ 2 x ^ 2 + (x + 7) ^ 2 = 17 ^ 2 x ^ 2 + x ^ 2 + 14x + 49 = 289 2x ^ 2 + 14x = 240 x ^ 2 + 7x -120 = 0 (x + 15) (x - 8) = 0 x = -15 x = 8 oczywiście długość boku nie może być ujemna, więc nieznane strony to: 8 i 8 + 7 = 15
Przeciwprostokątna trójkąta prostokątnego ma 6,1 jednostki długości. Dłuższa noga jest o 4,9 jednostki dłuższa niż krótsza noga. Jak znaleźć długości boków trójkąta?
Boki są koloru (niebieski) (1,1 cm i kolor (zielony) (6 cm Przeciwprostokątna: kolor (niebieski) (AB) = 6,1 cm (przy założeniu, że długość jest w cm) Niech krótsza noga: kolor (niebieski) (BC) = x cm Niech dłuższa noga: kolor (niebieski) (CA) = (x +4,9) cm Zgodnie z twierdzeniem Pitagorasa: (AB) ^ 2 = (BC) ^ 2 + (CA) ^ 2 (6,1) ^ 2 = (x) ^ 2 + (x + 4,9) ^ 2 37,21 = (x) ^ 2 + kolor (zielony) ((x + 4,9) ^ 2 Zastosowanie poniższej właściwości do koloru (zielony) ((x + 4,9) ^ 2 : kolor (niebieski) ((a + b) ^ 2 = a ^ 2 + 2ab + b ^ 2 37,21 = (x) ^ 2 + [kolor (zielony) (x ^ 2 + 2 xx x xx4,9 + 24,01) ] 37.21 = (x) ^ 2 + [kolor
Jedna noga trójkąta prawego jest o 8 milimetrów krótsza niż dłuższa noga, a przeciwprostokątna jest o 8 milimetrów dłuższa niż dłuższa noga. Jak znaleźć długości trójkąta?
24 mm, 32 mm i 40 mm Wywołanie x krótkiej nogi Wywołanie y długiej nogi Wywołanie h przeciwprostokątnej Otrzymujemy te równania x = y - 8 h = y + 8. Zastosuj twierdzenie Pythagora: h ^ 2 = x ^ 2 + y ^ 2 (y + 8) ^ 2 = y ^ 2 + (y - 8) ^ 2 Rozwijanie: y ^ 2 + 16y + 64 = y ^ 2 + y ^ 2 - 16y + 64 y ^ 2 - 32y = 0 y (y - 32) = 0 -> y = 32 mm x = 32 - 8 = 24 mm h = 32 + 8 = 40 mm Sprawdź: (40) ^ 2 = (24) ^ 2 + (32) ^ 2. DOBRZE.